Scientific publications

Busacca, F., Mangione, S., Neglia, G., Tinnirello, I., Palazzo, S., et al. (2024). FedLoRa: IoT Spectrum Sensing Through Fast and Energy-Efficient Federated Learning in LoRa Networks. MASS 2024 - IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems, September 2024, Seoul, South Korea.  https://inria.hal.science/hal-04762819v1

Christou, G., Vasiliadis, G., Zarras, A., & Ioannidis, S. (n.d.). iVault: Architectural Code Concealing Techniques to Protect Cryptographic Keys. https://doi.org/10.5281/ZENODO.12783182

da Silva Barros, T., Giroire, F., Aparicio-Pardo, R., Perennes, S., Natale, E., Na-, E., & Pérennes, S. (2024). Scheduling with Fully Compressible Tasks: Application to Deep Learning Inference with Neural Network Compression. https://doi.org/10.1109/CCGRID59990.2024.00045

da Silva Barros, T., Ferre, D., Giroire, F., Aparicio-Pardo, R., Perennes, S., Ferré, D., Giroire, F., & Pérennes, S. (2024). Scheduling Machine Learning Compressible Inference Tasks with Limited Energy Budget. Proceedings of the 53rd International Conference on Parallel Processing, 32, 961–970. https://doi.org/10.1145/3673038.3673106

Daliparthi, V. S. S. A., Tutschku, K., Momen, N., De Prado, M., Divernois, M., Pazos Escudero, N., & Bonnefous, J.-M. (2024, December 14–16). A License Management System for Collaborative AI Engineering. Accepted, In Proceedings of the 7th Artificial Intelligence and Cloud Computing Conference (AICCC 2024). Tokyo, Japan.

Diana, F., Marfoq, O., Xu, C., Neglia, G., Giroire, F., & Thomas, E. (2025). Attribute Inference Attacks for Federated Regression Tasks. https://inria.hal.science/hal-04878082v1

Gibson, P., Cano, J., Crowley, E., Storkey, A., & O'Boyle, M. (2024). DLAS: A conceptual model for across-stack deep learning acceleration. ACM Transactions on Architecture and Code Optimization (TACO), 2024, 3688609. https://doi.org/10.1145/3688609

Haris, J., Saha, R., Hu, W., & Cano, J. (2024). Designing efficient LLM accelerators for edge devices. Workshop on New Approaches for Addressing the Computing Requirements of LLMs and GNSs (ARC-LG), co-located with ISCA 2024, Buenos Aires, Argentina. https://arxiv.org/abs/2408.00462

Hu, J. C., Cavicchioli, R., Berardinelli, G., & Capotondi, A. (2024). ShareBERT: Embeddings Are Capable of Learning Hidden Layers. Proceedings of the AAAI Conference on Artificial Intelligence, 38(16), 18225–18233. https://doi.org/10.1609/AAAI.V38I16.29781

Kaplan, C. G., Xu, C., Marfoq, O., Neglia, G., & Santana De Oliveira, A. (2024). A Cautionary Tale: On the Role of Reference Data in Empirical Privacy Defenses. Proceedings on Privacy Enhancing Technologies, 2024(1), 525–548. https://petsymposium.org/popets/2024/popets-2024-0031.php

Le Bars, B., Bellet, A., Tommasi, M., Scaman, K., & Neglia, G. (2024). Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm. International Conference on Machine Learning (ICML). https://hal.science/hal-04611418

Natale, E., Ferré, D., Giambartolomei, G., Giroire, F., & Mallmann-Trenn, F. (2024). On the Sparsity of the Strong Lottery Ticket Hypothesis. 38th Conference on Neural Information Processing Systems (NeurIPS 2024), December 2024, Vancouver, Canada.https://hal.science/hal-04741369v2

Pedraza, A., Deniz, O., Singh, H., & Bueno, G. (2024). Leveraging AutoEncoders and chaos theory to improve adversarial example detection. Neural Computing and Applications. https://doi.org/10.1007/s00521-024-10141-1

Potocnik, V., Mauro, A. di, Leitner, C., Scherer, M., Rutishauser, G., Lamberti, L., & Benini, L. (2024). Kraken: An Open-Source RISC-V SoC for Ultra-Low Power Multi-Modal Perception. https://doi.org/10.21203/rs.3.rs-4023416/v1

Prisadnikov, N., van Gansbeke, W., Paudel, D. P., & van Gool, L. (2024). A Simple and Generalist Approach for Panoptic Segmentation. http://arxiv.org/abs/2408.16504

Rodio, A., & Neglia, G. (2024). FedStale: Leveraging Stale Updates in Federated Learning. ECAI 2024 - 27th European Conference on Artificial Intelligence, October 2024, Santiago de Compostela, Spain.  https://inria.hal.science/hal-04762831v1

Ruiz-Santaquiteria, J., Muñoz, J. D., Maigler, F. J., Deniz, O., & Bueno, G. (2024). Firearm-related action recognition and object detection dataset for video surveillance systems. Data in Brief, 52, 110030. https://doi.org/10.1016/J.DIB.2024.110030

Saha, R., Haris, J., & Cano, J. (2024). Accelerating PoT quantization on edge devices. 31st IEEE International Conference on Electronics Circuits and Systems (ICECS), Nancy, France. https://arxiv.org/abs/2409.20403

Schild, L., Abidin, A., & Preneel, B. (n.d.). Fast Transciphering Via Batched And Reconfigurable LUT Evaluation. IACR Transactions on Cryptographic Hardware and Embedded Systems 2024(4). 

Sharma, V., Pau, D., & Cano, J. (2024). Efficient tiny machine learning for human activity recognition on low-power edge devices. 2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI), Milano, Italy. https://doi.org/10.1109/RTSI61910.2024.10761203 (Received one of the best Track Paper Awards)

Symeonides, M., Nikolaidis, F., Trihinas, D., Pallis, G., Dikaiakos, M. D., & Bilas, A. (2023). FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds. In Proceedings of IEEE/ACM UCC 2023 (UCC’23). (2nd Best Paper Award).

Vasiliadis, G., et al. (2024). WRIT: Web Request Integrity and Attestation Against Malicious Browser Extensions. IEEE Transactions on Dependable and Secure Computing, 21(4), 3082–3095. https://doi.org/10.1109/TDSC.2023.3322516

Cioflan, C., Cavigelli, L., Rusci, M., de Prado, M., & Benini, L. (2024). On-Device Domain Learning for Keyword Spotting on Low-Power Extreme Edge Embedded Systems. https://arxiv.org/abs/2403.10549v1

Costantini, M., Neglia, G., & Spyropoulos, T. (2024). FedDec: Peer-to-peer Aided Federated Learning. SPAWC 2024 - IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications, September 2024, Lucca, Italy.  https://inria.hal.science/hal-04762825v1

Daliparthi, V. S. S. A., Momen, N., Tutschku, K., & De Prado, M. (2023, September). ViSDM 1.0: Vision Sovereignty Data Marketplace a Decentralized Platform for Crowdsourcing Data Collection and Trading. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 374-383). https://scholar.google.com/citations?view_op=view_citation&hl=en&user=z5sQ1nYAAAAJ&sortby=pubdate&citation_for_view=z5sQ1nYAAAAJ:_FxGoFyzp5QC.

Daliparthi, V. S. S. A., Momen, N., Tutschku, K., & De Prado, M. (2023b). ViSDM: A Liquid Democracy based Visual Data Marketplace for Sovereign Crowdsourcing Data Collection. ACM International Conference Proceeding Series, 108–115. https://doi.org/10.1145/3590777.3590794

de Prado, M., Rusci, M., Donze, R., Capotondi, A., Monnerat, S., Benini, L., & Pazos, N. (2021). Robustifying the deployment of tinyML models for autonomous mini-vehicles. Proceedings - IEEE International Symposium on Circuits and Systems, 2021-May. https://doi.org/10.3390/S21041339

Faticanti, F., & Neglia, G. (2024). Optimistic online caching for batched requests. Computer Networks, 244.  https://inria.hal.science/hal-04763270v1

Francobaldi, M., De Filippo, A., Borghesi, A., Pizurica, N., Jovancevi, I., Llewellynn, T., & de Prado, M. (2023). TinderAI: Support System for Matching AI Algorithms and Embedded Devices. The International FLAIRS Conference Proceedings, 36. https://doi.org/10.32473/FLAIRS.36.133100

Markaki, O., Papapostolou, A., Mouzakitis, S., Zrazinska, I., Sobek, U., Wilczek, T., Troumpoukis, A., Ziouvelou, X., Karkaletsis, V., Carrasco, A., Garcia, M., Roger, G., Micheli, A., Codagnone, J. A., De Prado, M., & O’Neill, S. (2023). Encouraging AI Adoption by SMEs: Opportunities and Contributions by the ICT49 Project Cluster. 14th International Conference on Information, Intelligence, Systems and Applications, IISA 2023. https://doi.org/10.1109/IISA59645.2023.10345867