da Silva Barros, T., Giroire, F., Aparicio-Pardo, R., Perennes, S., Natale, E., Na-, E., & Pérennes, S. (2024). Scheduling with Fully Compressible Tasks: Application to Deep Learning Inference with Neural Network Compression. https://doi.org/10.1109/CCGRID59990.2024.00045
da Silva Barros, T., Ferre, D., Giroire, F., Aparicio-Pardo, R., Perennes, S., Ferré, D., Giroire, F., & Pérennes, S. (2024). Scheduling Machine Learning Compressible Inference Tasks with Limited Energy Budget. Proceedings of the 53rd International Conference on Parallel Processing, 32, 961–970. https://doi.org/10.1145/3673038.3673106
Daliparthi, V. S. S. A., Tutschku, K., Momen, N., De Prado, M., Divernois, M., Pazos Escudero, N., & Bonnefous, J.-M. (2024, December 14–16). A License Management System for Collaborative AI Engineering. Accepted, In Proceedings of the 7th Artificial Intelligence and Cloud Computing Conference (AICCC 2024). Tokyo, Japan.
Hu, J. C., Cavicchioli, R., Berardinelli, G., & Capotondi, A. (2024). ShareBERT: Embeddings Are Capable of Learning Hidden Layers. Proceedings of the AAAI Conference on Artificial Intelligence, 38(16), 18225–18233. https://doi.org/10.1609/AAAI.V38I16.29781
Kaplan, C. G., Xu, C., Marfoq, O., Neglia, G., & Santana De Oliveira, A. (2024). A Cautionary Tale: On the Role of Reference Data in Empirical Privacy Defenses. Proceedings on Privacy Enhancing Technologies, 2024(1), 525–548. https://petsymposium.org/popets/2024/popets-2024-0031.php
Le Bars, B., Bellet, A., Tommasi, M., Scaman, K., & Neglia, G. (2024). Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm. International Conference on Machine Learning (ICML). https://hal.science/hal-04611418
Prisadnikov, N., van Gansbeke, W., Paudel, D. P., & van Gool, L. (2024). A Simple and Generalist Approach for Panoptic Segmentation. http://arxiv.org/abs/2408.16504
Schild, L., Abidin, A., & Preneel, B. (n.d.). Fast Transciphering Via Batched And Reconfigurable LUT Evaluation. IACR Transactions on Cryptographic Hardware and Embedded Systems 2024(4).
Symeonides, M., Nikolaidis, F., Trihinas, D., Pallis, G., Dikaiakos, M. D., & Bilas, A. (2023). FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds. In Proceedings of IEEE/ACM UCC 2023 (UCC’23). (2nd Best Paper Award).
Vasiliadis, G., et al. (2024). WRIT: Web Request Integrity and Attestation Against Malicious Browser Extensions. IEEE Transactions on Dependable and Secure Computing, 21(4), 3082–3095. https://doi.org/10.1109/TDSC.2023.3322516
Cioflan, C., Cavigelli, L., Rusci, M., de Prado, M., & Benini, L. (2024). On-Device Domain Learning for Keyword Spotting on Low-Power Extreme Edge Embedded Systems. https://arxiv.org/abs/2403.10549v1
Daliparthi, V. S. S. A., Momen, N., Tutschku, K., & De Prado, M. (2023, September). ViSDM 1.0: Vision Sovereignty Data Marketplace a Decentralized Platform for Crowdsourcing Data Collection and Trading. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 374-383). https://scholar.google.com/citations?view_op=view_citation&hl=en&user=z5sQ1nYAAAAJ&sortby=pubdate&citation_for_view=z5sQ1nYAAAAJ:_FxGoFyzp5QC.
Daliparthi, V. S. S. A., Momen, N., Tutschku, K., & De Prado, M. (2023b). ViSDM: A Liquid Democracy based Visual Data Marketplace for Sovereign Crowdsourcing Data Collection. ACM International Conference Proceeding Series, 108–115. https://doi.org/10.1145/3590777.3590794
de Prado, M., Rusci, M., Donze, R., Capotondi, A., Monnerat, S., Benini, L., & Pazos, N. (2021). Robustifying the deployment of tinyML models for autonomous mini-vehicles. Proceedings - IEEE International Symposium on Circuits and Systems, 2021-May. https://doi.org/10.3390/S21041339
Francobaldi, M., De Filippo, A., Borghesi, A., Pizurica, N., Jovancevi, I., Llewellynn, T., & de Prado, M. (2023). TinderAI: Support System for Matching AI Algorithms and Embedded Devices. The International FLAIRS Conference Proceedings, 36. https://doi.org/10.32473/FLAIRS.36.133100
Markaki, O., Papapostolou, A., Mouzakitis, S., Zrazinska, I., Sobek, U., Wilczek, T., Troumpoukis, A., Ziouvelou, X., Karkaletsis, V., Carrasco, A., Garcia, M., Roger, G., Micheli, A., Codagnone, J. A., De Prado, M., & O’Neill, S. (2023). Encouraging AI Adoption by SMEs: Opportunities and Contributions by the ICT49 Project Cluster. 14th International Conference on Information, Intelligence, Systems and Applications, IISA 2023. https://doi.org/10.1109/IISA59645.2023.10345867