
Fast Transciphering Via Batched And
Reconfigurable LUT Evaluation

Leonard Schild1, Aysajan Abidin1 and Bart Preneel1

COSIC KU Leuven, Leuven, Belgium, firstname.lastname@kuleuven.be

Abstract. Fully homomorphic encryption provides a way to perform computations
in a privacy preserving manner. However, despite years of optimization, modern
methods may still be too computationally expensive for devices limited by speed or
memory constraints. A paradigm that may bridge this gap consists of transciphering:
as fully homomorphic schemes can perform most computations obliviously, they can
also execute the decryption circuit of any conventional block or stream cipher. Hence,
less powerful systems may continue to encrypt their data using classical ciphers that
may offer hardware support (e.g., AES) and outsourcing the task of transforming
the ciphertexts into their homomorphic equivalent to more powerful systems. In this
work, we advance transciphering methods that leverage accumulator-based schemes
such as Torus-FHE (TFHE) or FHEW. To this end, we propose a novel method to
homomorphically evaluate look-up tables in a setting in which encrypted digits are
provided on base 2. At a high level, our method relies on the fact that functions
with binary range, i.e., mapping values to {0, 1}, can be evaluated at the same
computational cost as negacyclic functions, relying only on the default functionality
of accumulator based schemes. To test our algorithm, we implement the AES-128
encryption circuit in OPENFHE and report timings of 67 s for a single block, which is
25% faster than the state of the art and in general, up to 300% faster than other recent
works. Furthermore, we achieve this speedup without relying on an instantiation that
leverages a power of 2 modulus and can exploit the natural modulo arithmetic of
modern processors.
Keywords: Fully Homomorphic Encryption · Transciphering · Lookup Table Evalu-
tion · FHE · LUT · AES

1 Introduction
Unlike traditional encryption methods, fully homomorphic encryption (FHE) enables
computations on encrypted data without decryption, thereby preserving the confidentiality
of sensitive information throughout the entire computational process. As such, FHE has
applications in scenarios where secure outsourcing of computation is imperative, such
as in cloud computing environments or collaborative data analysis across distributed
networks. However, despite extensive optimization efforts, FHE encryption remains exces-
sively demanding in computation for devices constrained by speed or memory limitations.
A potential solution is transciphering, which utilizes FHE’s capability to evaluate the
decryption circuit of any conventional block- or streamcipher. Consequently, low-end
systems can encrypt their data using traditional ciphers, possibly with hardware support
(such as AES), while delegating the conversion of ciphertexts into their homomorphic
equivalents to the cloud. Although the transciphering of classical ciphers poses little
challenges in theory, the actual execution may be rather inefficient with regards to time
or memory. This problem led to the creation of stream and block ciphers designed to
make transciphering very efficient, such as Chaghri [AMT22] and RASTA [DEG+18]. Such
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schemes are, in practice, much faster to transcipher while avoiding shortcomings of actual
FHE schemes, such as large ciphertext size.

Despite having more beneficial properties than classical ciphers, adoption has been slow
for numerous reasons. On the one hand, vendors may prefer to rely on ciphers with a long
history of cryptanalysis. Furthermore, many processors provide hardware acceleration for
classical ciphers, such as AES-NI for x86, AES instructions through ARM cryptographic
extensions and AES-Accelerator on ESP32 devices. Such support allows encryption to be
highly efficient even on embedded systems. Finally, transciphering of classical ciphers may
be easier to adopt since only methods to generate FHE keys need to be implemented, and
existing cryptographic libraries need not be updated, putting fewer burdens on vendors of
closed-source systems or other devices in which only a single party can modify software
such as smart watches.

1.1 Contribution
Our primary contribution consists of a new homomorphic LUT evaluation algorithm
for binary digits that immediately improves the state of the art with regards to AES
transciphering. As we rely on accumulator based schemes such as TFHE by Chilloti et al.
[CGGI20] we give high level overview of the primitives we use and refer to Sec. 2 for more
details.

In our context, we rely on Regev encryptions [Reg09] that are given by learning-with
error-samples or LWE samples. Then, for a message m ∈ Zt, t ∈ N and ciphertext modulus
q, an encryption is given by LWE( q

t m) = [⃗a⊤, b]⊤ where b = ⟨⃗a, s⃗⟩+ q
t m+e (mod q) and a⃗

is a random vector, s⃗ is the (symmetric) secret key and e is a small error variable. It is easy
to see that LWE samples are additively homomorphic by default, but every addition will
increase the magnitude of the error part. To reset the error, we rely on the bootstrapping
operation.

The starting point of this step is an accumulator or ring-LWE sample (RLWE) acc =
RLWE(p) of a polynomial p ∈ R := ZQ[X]/(XN + 1) with log2(N) ∈ N, Q >> q. For
simplicity, we assume that q = 2N . RLWE samples are defined in an analogous way to
LWE samples, i.e., RLWE(p) = [a, b], b = as + p + e where a, s, e ∈ R. Then, given such
an accumulator acc, encryptions of the coefficients s⃗i of the LWE secret vector, possibly
under another encryption scheme, the blind-rotation step which is the major operation of
the bootstrapping procedure will compute RLWE(r) = RLWE(p ·Xb−⟨a⃗,s⃗⟩ (mod 2N)) for a
sample LWE( q

t m) = [⃗a, b]⊤. Note that the modular reduction by 2N in the exponent stems
from the order of the multiplicative subgroup of R generated by X. More importantly,
the error term of the output RLWE sample is independent of the noise in the LWE sample.
The major strength of this operation is that the constant coefficient r0 will be equal to
(−1)v · pN−(b−⟨a⃗,s⃗⟩) (mod N) with v = 0 if b− ⟨⃗a, s⃗⟩ (mod 2N) ∈ {0, N + 1, ..., 2N − 1} and
v = 1 otherwise. As it is possible to derive an LWE sample under modulus q for a single
coefficient of an RLWE sample (cf. Sec. 2), the previous observation highlights that it is
possible to encode lookup tables into p as long as we can predict or ignore the sign flip
induced by v. Then, we can make two key observations:

Obs. 1 Any function f : {0, 1} 7→ {0, w} ⊂ ZQ can be easily computed with the blind-
rotation operation. In this setting, the input is given by an LWE sample LWE( q

2 m)
and adding q

4 to the b component we can observe that m = 0 ⇒ v = 0 and
m = 1⇒ v = 1 as long as |e| ≤ q

4 . Then, setting every coefficient of p to w̄ = −
⌊

w
2

⌉
where division by 2 is done over the real numbers, we see that r0 = (−1)m · w̄ after
blind-rotation and finally, after deriving an LWE sample we can simply add

⌊
w
2

⌉
to

obtain the target values.

Obs. 2 We have previously assumed that q = 2N . Another interesting setting is q = N ,
where we can point out that any function f : Zt 7→ {0, Q

2 } may be evaluated. Note
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that under modulus q = N , we may write b − ⟨⃗a, s⃗⟩ = q
t m + e + k · N and the

blind-rotation computes RLWE((−1)k · p ·X
q
t m+e (mod N)) Then, the sign flip no

longer depends on the encrypted message but is rather random and setting the
coefficients of p to either

⌊
Q
2

⌉
or 0, we can safely ignore the sign flips as∣∣∣∣Q

2 − (−Q

2 (mod Q))
∣∣∣∣ ∈ {0, 1},

i.e. we incurr a negligible error in the worst case.

We can now present our contributions:

LUT evaluation. We show a new way of evaluating lookup tables indexed by several,
binary digits encrypted as LWE samples. More specifically, our input is given by u
LWE samples cti = LWE( q

2 Bi), Bi ∈ {0, 1} and we wish to evalute a lookup table
f : {0, 1}u 7→ {0, 1}u. We split the LUT evaluation into three stages:

• Composition: First, a subset of κ bits is selected. Then, using Observation 1, we
rescale the bits such that they can be composed into a unique encrypted integer ctκ,
i.e. the i− th bit Bi is mapped from {0, 1} to {0, 2i} and all κ outputs are summed.

• Output Generation: Using Observation 1, we bootstrap ctκ so that we compute
all possible outputs that conform to the κ packed bits in ctκ. However, since ctκ does
not incorporate information about the last u− κ bits we need to generate outputs
for every combination of the remaining bits.

• Selection: In the final step, we use the remaining bits to select the correct result
from the previously generated outputs. To this end, we rely on Observation 1 and
the identity

p + q

2 + S

(
p− q

2

)
=

{
p if S = 1
q if S = −1

by letting the sign flip in the bootstrapping take the place of S.

The most important advantage of our approach is (re)configurability: by splitting the
LUT evaluation into multiple stages that are largely independent, we may optimize our
parameters for each step taking their requirements into account. For example, each stage
will perform blind-rotation with regards to different input plaintext spaces. This has an
impact on the magnitude of moduli used and the ring dimension N , both of which will
have a direct impact on performance. For the sake of conciseness, we left out some details
in the previous overview which will be discussed later on, such as how to generate every
output efficiently or how to manage the noise growth of certain operations.

AES Transciphering. At a high level, the key components of our AES transciphering
are LWE sample addition, LUT evaluation (Algorithm 8), and homomorphic Galois
multiplication (Algorithm 9). To begin with, we encode an AES state S as a rank 3 tensor
of dimension 4× 4× 8 containing LWE samples encrypting the individual bits of the state
byte, which are encoded as

Si,j,k = LWE
(
∆q,2 · [Bi,j ]k

)
,

where [Bi,j ]k is the k-th bit of the state byte at entry i, j and ∆q,2 =
⌊

q
2
⌉
. This encoding

makes XOR operations effectively free as they can be computed through the linear
homomorphism of LWE samples. We homomorphically implement the four steps of AES
round function as follows.
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• AddRoundKey, which XORs the key schedule with the state matrix, requires only
LWE sample addition;

• SubBytes, which evaluates a bijection on the entries of the state matrix, is imple-
mented using our LUT evaluation technique;

• ShiftRows, which permutes the entries of the state matrix, is just a permutation of
the state tensor;

• MixColumns, which is a linear function over the columns of the state matrix (or
GF (28)), is implemented using LWE sample addition and a homomorphic multipli-
cation algorithm over GF (28).

1.2 Related Works
We briefly discuss related works, focusing on TFHE-based lookup table evaluation and
transciphering.

By default, accumulator-based schemes such as TFHE by Chilotti et al. [CGGI20] and
FHEW by Ducas and Micciancio [DM15] can evaluate arbitrary lookup tables, provided
the table fulfills a negacyclity property, i.e. for a value m, LUT[m + q

2 ] = −LUT[m]
where q is the ciphertext modulus. This restriction was removed in follow-up works
[CLOT21, KS22, LMP23]. Although, in theory, the lookup tables may have an arbitrary
input and output size, the performance of the primary bottleneck, bootstrapping, degrades
quickly once the input plaintext size exceeds 5-6 bits. To approach this issue, Guimarães et
al. [GBA21] introduce a chain- and tree-based method to evaluate lookup tables by splitting
inputs into d digits in base B. The chain-based method can efficiently evaluate functions
with carry-like properties, such as addition circuits, whereas the tree-based method can
evaluate arbitrary lookup tables. The number of bootstrap of the tree base method is O(Bd)
by default, but may be reduced to O(d) by leveraging circuit bootstrapping [CGGI20]
to transform LWE samples into RGSW samples which were introduced by Gentry et al.
[GSW13] and can be viewed as matrices of RLWE sample that are also multiplicatively
homomorphic. We note that the use of techniques in [GBA21] is restricted to a setting in
which the most significant bit of the phase of the input digits is known.

In the context of transciphering, we focus on several recent works that perform AES-128
transciphering. In [TCBS23], the authors leverage the tree-based method of [GBA21]
for every step of the AES circuit, including XOR operations. The authors test several
different bases for their digits and obtain a sequential time of 270 s. In 2023, Wei et al.
[WWL+23] significantly decrease the transciphering time on a processor of similar speed.
In their work, the authors perform operations over bits in which case all operations except
the evaluation of the S-BOX of the AES circuit can be performed without bootstrapping.
To compute the S-BOX, the authors employ the circuit bootstrapping technique and
then evaluate using horizontal and vertical packing techniques from [CGGI20] to obtain
a runtime of 87 s. Finally, a novel approach to homomorphically evaluate functions has
recently been introduced by Bon et al [BPR23]. Their methodology allows the evaluation
of Boolean functions in several variables, but in some circumstances, they only use a single
blind-rotation operation. To showcase their algorithm, the authors implement the AES
SBOX evaluation and obtain a runtime of 105 seconds. We will revisit the aforementioned
works later on in the evaluation.

2 Preliminaries
In this section, we introduce the notation that we use throughout this work. Furthermore,
we give a brief introduction to the basic building blocks of TFHE and other related
cryptosystems.
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2.1 Notation
The letters q and Q will always denote moduli that may be prime and in general q is a
power of 2. Then, we denote the integers modulo Q as ZQ and the set {0, 1} as B. For N
a power of two, ϕ2N = (XN + 1) is the 2N -th cyclotomic polynomial and we define RN,Q

as ZQ[X]/ϕ2N (X). For vectors p⃗ or polynomials p, we denote the i-th coefficient as p⃗i

and pi, respectively, and when we write c⃗ or c for a constant c ∈ Z, we mean a vector or
polynomial containing the constant c in every coefficient.

Let χQ be a distribution over ZQ, then we call χQ B-bounded if its variance is less or
equal to B. When referring to a polynomial p being distributed according to χQ, we assume
that all coefficients of p were sampled from this distribution. The vector s⃗ and polynomial
s will denote secret keys that may be sampled from special distributions such as discrete
Gaussian or binary distributions. By L ∈ N we denote a basis inducing a number of digits
ℓ depending on context, e.g. l = ⌈logL(Q)⌉. Throughout this paper, ⟨k⟩ = {0, 1, ..., k − 1}
and [x]i will denote the i-th least significant bit of x ∈ Z. Finally, t will denote a message
space and when we operate under a modulus q, ∆q,t =

⌊
q
t

⌉
is a scaling parameter.

Given a dimensional parameter n ∈ N, a modulus q ∈ N and a B-bounded error
distribution χq, we define for a value m ∈ Zq and a secret vector s⃗ ∈ Zn

q

LWEs⃗(m) : =
[⃗
a⊤, b

]⊤ ∈ Zn
q × Zq

b = ⟨⃗a, s⃗⟩+ m + e, e
$← χq,

where the coefficients of a⃗ are sampled uniformly from Zq. We shall let φ denote the phase
of an LWE ciphertext ct, i.e., φ(ct) = b− ⟨⃗a, s⃗⟩ = m + e. Similarly, given a polynomial
ring RN,Q and an error distribution χQ over ZQ we define for a message m ∈ RN,Q

RLWEs(m) := [a, b]⊤ ∈ R2
N,Q ,

where the coefficients of a are sampled uniformly from ZQ and b = a · s + m + e, here
the coefficients of e are sampled from χQ. We note that by construction LWE and
RLWE samples are both additively homomorphic and homomorphic with regards to scalar
multiplication. For the sake of conciseness, we will occasionally drop the subscript for
LWE and RLWE samples unless it is necessary, i.e., we write LWE(m) or RLWE(m).

2.2 Bootstrapping in Accumulator Based Schemes
All fully homomorphic encryption schemes encrypt their values by introducing a noise
variable whose magnitude will increase with each operation performed. Consequently, it
may happen that at some point that a ciphertext becomes impossible to decrypt. The
bootstrapping operation, which will vary from scheme to scheme, provides a method that
given a noisy ciphertext outputs a new ciphertext, encoding the same value but with a
noise magnitude independent of the input noise. In this subsection, we briefly introduce
the basic building blocks of bootstrapping in accumulator based schemes.

We begin by noting that it is possible to extract an LWE sample from an RLWE sample
without increasing the noise or providing additional key material, as shown in Algorithm 1.
In this case, the LWE sample output by the algorithm is encrypted with regards to the
coefficients of the secret ring polynomial of the input. Next, we introduce the notion of
modulus switching [BV11], described in Algorithm 2. The modulus switching operation
transforms an LWE sample under modulus Q and dimension n, containing an encoding
of a message m, into a new LWE sample under modulus q encoding the same message
with a different noise variance. The magnitude of that noise depends on the ratio Q

q , the
coefficient distribution of the secret key and the way rounding is performed. For more
details, we refer to [LMK+23].
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Algorithm 1: SampleExtract
Input: An RLWE sample acc = RLWEs(m) = [a, b]⊤ ∈ R2

N,Q

Input: An index 0 ≤ k < N
Output: An LWE sample ct = LWEs⃗(mi) where s⃗i = si

b← bi;
for i = 0 to N − 1 do

a⃗i ←

{
−ak−i+N k − i < 0
ak−i k − i ≥ 0

end
return ct = [⃗a⊤, b]⊤

Algorithm 2: ModSwitchQ→q

Input: An LWE sample ctQ = LWE(∆Q,tm) = [⃗a⊤, b]⊤ ∈ Zn
Q × ZQ

Output: An LWE sample ctq = LWE(∆q,tm) = [⃗c⊤, d]⊤ ∈ Zn
q × Zq

d←
⌊

q·b
Q

⌉
;

for i = 0 to n− 1 do
c⃗i ←

⌊
q·⃗ai

Q

⌉
;

end
return ctq = [⃗c⊤, d]⊤

We now come to the key switching procedure [BV11], described in Algorithm 3. Given
an LWE sample under a secret key s⃗ and a key switching key as input, it outputs a new
LWE sample encoding the same message under a different secret key S⃗. We note that the
key switching operation can easily be extended to output an RLWE sample by letting the
key switching key in Algorithm 3 be a tensor of RLWE samples instead of LWE samples
and in these cases we denote the key-switching by RLWEKeySwitchs⃗→s.

Algorithm 3: KeySwitchs⃗→S⃗

Input: An LWE sample ct = LWEs⃗(m̃) = [⃗a⊤, b]⊤ ∈ Zn
q × Zq

Input: A key switching key KsK of dimension n× l× L where
KsKi,j,k = LWES⃗

(
k · Lj · s⃗i

)
∈ Zn′

q × Zq

Output: An LWE sample ctout = [c⊤, d]⊤ ∈ LWES⃗

Set ctout ← [⃗0⊤, b]⊤;
for i = 0 to n− 1 do

for j = 0 to to l − 1 do
Set ai,j to be the j-th digit of a⃗i in base L;
Compute ctout ← ctout −KsKi,j,ai,j

;
end

end
return ctout

The final building block is the blind-rotation operation BlindRotate. We shall not
describe this procedure in detail since there is a variety of techniques to perform this step
[CGGI20],[DM15],[LMK+23], each with different trade-offs. However, we do note that the
general approach expects an LWE sample ct = LWE(m̃) usually under modulus 2N and
a possibly noiseless RLWE sample or accumulator acc = RLWE(v) with v(X) ∈ RN,Q.
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Then, it holds that

BlindRotate(ct, acc) = RLWEs(v ·Xφ(ct) (mod 2N)) , (1)

where the magnitude of the noise component of the output RLWE sample is independent
of ct. Since N was chosen as a power of two, Xk ≡ −Xk−N for any monomial Xk ∈
RN,Q, N ≤ k < 2N . We will heavily rely on this property and, therefore, give another way
of expressing Eqn 1 below in Eqn 2:

BlindRotate(ct, acc) =
{

RLWEs

(
v ·Xφ(ct) (mod N)) if φ(ct) (mod 2N) < N,

RLWEs

(
− v ·Xφ(ct) (mod N)) if φ(ct) (mod 2N) ≥ N.

(2)

The previously described building blocks can be composed in different ways to create a full
bootstrapping procedure, which decreases the noise of an input LWE sample and can also
be leveraged to evaluate an arbitrary function at the same time. For a thorough treatment,
we refer to any of [CGGI20, DM15, LMK+23, KS22].

Finally, we stress that all major blind-rotation approaches [CGGI20, DM15, LMK+23]
induce noise additively and do not amplify the noise variance of the input RLWE sample
beyond that. To show this in case of the CGGI/TFHE blind-rotation, we refer to [KS22],
but note in general that this fact can be reduced to the observation that products between
RLWE and RGSW samples [GSW13] increase the noise of the RLWE sample in proportion
to the message of the RGSW sample, which in the context of blind-rotation usually consists
of monomials, i.e., the error is not amplified.

3 Reconfigurable LUT evaluation
This section shows a specific approach evaluating lookup tables (LUTs) in settings where
both the input and output are given as bits. More specifically, we are given u LWE
samples (cti

q)i∈⟨u⟩ encoding bits, i.e., cti
q = LWE (∆q,2Bi), that correspond to an integer

M =
∑u−1

i=0 Bi · 2i. Then, given a map f : Z2u 7→ Z2u we aim to obtain each bit
βi = [f(M)]i, i ∈ ⟨u⟩ without computing f(M). In other words, we immediately compute

cti
out = LWE (∆Q,2βi) .

with Q possibly equal to q. We proceed as follows: in Sect. 3.1 we illustrate some properties
that facilitate the evaluation of binary functions via bootstrapping and describe methods
to perform approximate multiplexing of RLWE ciphertext in Sect. 3.2 in order to finally
construct the LUT evaluation technique in Sect. 3.3 .

3.1 Functional Binary Bootstrapping
First, let ct = LWE(∆q,tm) be an encoding of a message m ∈ Zt. Then, any function
f : Zt 7→ Bu, u > 0, can be evaluated in a single blind-rotation. Generally, the blind-
rotation step assumes the input to be under modulus 2N , but the input may also be
provided under modulus N . Recall that the multiplicative order of RN,Q is 2N and that
for an LWE sample ct = LWEs⃗(m) under modulus N , we can write

φ(ct) = ⟨⃗a, s⃗⟩+ m + e + k ·N , (3)

with ⟨⃗a, s⃗⟩ + m + e < N . Then, if we supply the same LWE sample modulo N to the
blind-rotation procedure, we can observe that in Eqn. 2 the sign flip now purely depends
on whether k is even or odd in Eqn. 3. Furthermore, the coefficients of the polynomial in
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the accumulator must contain multiples of
⌊

Q
2

⌉
in order to conform to the binary output

space. Then, the following equation∣∣∣∣⌊Q

2

⌉
−

(
−

⌊
Q

2

⌉
(mod Q)

)∣∣∣∣ ∈ {0, 1} (4)

states that sign flips with such a scaling factor can effectively be neglected and together
with the previous discussion induces a method to evaluate any function with one or several
output bits using only in a single blind-rotation. We give the concrete steps in Algorithm 4
and ignore the parameter C ′ for now. We note that the algorithm outputs the bits as LWE
samples modulo Q and under a secret key whose coefficients correspond to the coefficients
of the RLWE key. If a different output key (or modulus) is required, we may use the key
(or modulus) switching from Sect. 2. Lemma 1 states the correctness of Algorithm 4.

Algorithm 4: EvalBinFunc
Input: ctq = LWEs⃗(∆q,tm) = [⃗a⊤, b]⊤
Input: A map f : Zt 7→ Bu with f(x) = [f0(x), ..., fu−1(x)]
Input: Optional Plaintext space C ′

Output: cti
out = LWES⃗(∆Q,2βi) with βi = fi(m)

(pi)i∈⟨u⟩ ← 0 ∈ RN,Q;
for j = 0 to t− 1 do

for i = 0 to u− 1 do
zi
j· N

t

← fi(t− j);
end

end
for i = 0 to u− 1 do

ϵi ← [||zi||0 ≥ t
2 ];

for j = 0 to t− 1 do
pi

j· N
t

← ϵi + (−1)ϵi · zi
j· N

t

;
end

end
C ← 2 if C ′ is not provided, else C ′;
ctN ← ModSwitchq→N (ctq);
acc←

[
0,

⌊
Q
C

⌉
·X− N

2t ·
∑ N

t
i=0 Xi

]
;

accout ← BlindRotate(ctN , acc);
for i = 0 to u− 1 do

acci ← accout · pi;
cti

out ← SampleExtract(acci, 0);
if ϵi = 1 then

cti
out ←

[⃗
0,

⌊
Q
C

⌉]⊤
− cti

out;
end

end
return [cti

out]i∈⟨u⟩

Lemma 1. Let ctq = LWEs⃗(∆q,tm) = [⃗a⊤, b = ⟨⃗a, s⃗⟩ + ∆q,tm + e]⊤, f : Zt 7→ Bu with
f(x) = [f0(x), ..., fu−1(x)] and C = C ′ = 2. Then, if |e| < q

2t , Algorithm 4 outputs
[cti

out]i∈⟨u⟩ such that cti
out = LWES⃗(∆Q,2βi) with βi = fi(m) and noise variance bounded

by
Bout ≤

t

2BBR .
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Proof. First, we note that for all i ∈ ⟨u⟩ , j ∈ ⟨t⟩ it holds that

pi
j· N

t
=

{
fi(t− j) if ||z||0 < t

2 ⇔ ϵi = 0 ,

1− fi(t− j) else .

Then, we have that

φ(acci) = φ(pi · acc)

= pi ·Xφ(ctN ) ·
⌊

Q

2

⌉
·X− N

2t ·
N
t∑

i=0
Xi + pi · e

= X
N
t m+eN ·

⌊
Q

2

⌉
·X− N

2t · pi ·
N
t∑

i=0
Xi + pi · e

= X
N
t m+eN ·

⌊
Q

2

⌉
·X− N

2t ·
t−1∑
j=0

N
t∑

i=0
pi

j· N
t
·Xi + pi · e

=⇒ φ(acci)0 =

X
N
t m+eN ·

⌊
Q

2

⌉
·X− N

2t ·
t−1∑
j=0

N
t∑

i=0
pi

j· N
t
·Xi


0

+ (pi · e)0

=
⌊

Q

2

⌉
·

t−1∑
j=0

N
t∑

i=0
pi

j· N
t
·Xi


N
t (t−m)−eN − N

2t (mod N)

+ (pi · e)0

=
⌊

Q

2

⌉
· pi

(t−m)· N
t

+ (pi · e)0 ,

where the last step follows from the assumption that |e| ≤ q
2t ⇔ |eN | ≤ N

2t and where e is
the error polynomial induced by blind-rotation. Hence:

φ(cti
out) =

{
φ(acci)0 if ϵi = 0⌊

Q
2

⌉
− φ(acci)0 if ϵi = 1

=


⌊

Q
2

⌉
· pi

(t−m)· N
t

+ (e · pi)0 if ϵi = 0⌊
Q
2

⌉
−

⌊
Q
2

⌉
· pi

(t−m)· N
t

− (e · pi)0 if ϵi = 1

=
⌊

Q

2

⌉
· fi(m)± (e · pi)0 .

Finally, we note that

Var((e · pi)0) = Var(e · pi) = Var

 ∑
j:pi

j
=1

e ·Xj


= ||pi||0 · Var(e)

≤ t

2Var(e)

= t

2BBR .

At a high level, the method works as follows. Initially, a set of binary polynomials
encodes the respective output bits. Then, an accumulator is created which can be intuitively
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seen as a constant with padding and where the number of nonzero entries corresponds to
the chunk size of the messages, i.e., N

t . Next, we perform a blind-rotation after switching
the modulus of the input ciphertext to N . As previously discussed, we can ignore the
random sign flip as we used a scaling factor of

⌊
Q
2

⌉
. Finally, we multiply the output of

the blind-rotation with the polynomials we previously constructed, resulting in an RLWE
sample encoding a polynomial whose constant coefficient purely depends on the phase of
the input LWE sample.

As we have just seen how to evaluate binary functions and, by extension, bit-decom-
positions, we may also look at the inverse operation bit composition or de-multiplexing.
Composing several bits into an integer can easily be achieved using the default functionality
of accumulator-based schemes. The concrete steps are given in Algorithm 5 and leverage the
fact that we encode the binary plaintext in the most significant bit of the phase. Initially,

Algorithm 5: AssembleInteger
Input: (cti

q)i∈⟨u⟩ = LWE
(

q
2 Bi

)
Input: Output plaintext space t

Output: ctout = LWE
(⌊

Q
t

⌉
·
∑u−1

i=0 2iBi

)
ctout = [⃗0, 0] ∈ ZN

Q × ZQ;
h←

⌊
Q
2t

⌉
· (1−X

N
2 )

(∑ N
2 −1

i=0 Xi
)

;
acc← [0, h]⊤;
for i ∈ ⟨u⟩ do

cti
2N ← ModSwitchq→2N (cti

q +
[⃗
0⊤, q

4
]⊤);

acci ← BlindRotate(cti
2N , 2i · acc);

cti
Q ← SampleExtract(acci, 0);

cti
Q ← cti

Q +
[⃗
0, 2i ·

⌊
Q
2t

⌉]
;

ctout ← ctout + cti
Q;

end
return ctout

we add q
4 to the LWE samples before blind-rotation in order to center the distribution

of the phase to q
4 + q

2 Bi, guaranteeing that the most significant bit of the phase matches
the bit encoded in the LWE sample. Then, each LWE sample is modulo switched to 2N
and blindrotated with an accumulator that guarantees that the sign of the constant term
depends on the most significant bit of the input. Afterwards, an LWE sample is extracted
and the message is mapped to 0 or a power of two, and finally, all LWE samples are added.
For the output variance, we give the following Lemma.

Lemma 2. Let BBR be the noise variance induced by the blind-rotation algorithm. Then,
Algorithm 5 outputs an LWE sample of dimension N and modulus Q with noise variance
Bout ≤ u · BBR.

Proof. Let BBR be the noise variance induced by the blind-rotation algorithm. Then all
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cti
0 have an error component with variance equal to BBR. It follows that

Var (φ(ctout)) = Var

φ

 ∑
i∈⟨u⟩

cti
Q


=

∑
i∈⟨u⟩

Var
(
φ(cti

Q)
)

≤ u · BBR .

Leveraging the last two algorithms, we can point out that by first applying Algorithm 4
followed by Algorithm 5 we achieve a functional bootstrap without any assumption
on the most significant of the original integer input. Compared to recent works like
[LMP23],[CLOT21] or [KS22] the number of blind-rotations of the outlined procedure may
be higher. However, it may still be preferable in a scenario in which part of the input
is given as bits and one input as integer, and the output is to be given as an integer,
e.g. when we need to compute a bitwise XOR operation x⊕ y and the right operand is
given as bits. Then, inputs do not need to be combined to evaluate this operation via
bootstrapping. Furthermore, splitting up the algorithm this way can be favourable as both
stages have different requirements with regards to the the parameter sets of blind-rotation.
Algorithm 4 needs to support a u0-bit input space and a binary output space, whereas
Algorithm 5 needs to support a binary input space and a u1-bit output space.

By inverting the order of application, we can similarly construct a binary LUT evaluation
technique by first applying Algorithm 5 followed by Algorithm 4, using either u or blind-
rotations. For a binary setting, this is already more favourable than the tree-based method
given by Guimarães et al. [GBA21], which can have exponential runtime if no scheme
switching is employed. Furthermore, we would no longer have to make any assumptions
with regards to the most significant bit of the phase of the LWE samples as is required in
[CIM19] which is leveraged by [GBA21].

3.2 Approximate Multiplexing
In this subsection, we discuss two techniques allowing us to approximately multiplex
between two RLWE samples given an LWE sample encoding a bit as control signal. More
formally, given acc0 = RLWE(p), acc1 = RLWE(q), and ct = LWE(∆q,2B), B ∈ B we wish
to compute:

MUX(ct, acc0, acc1) =
{

RLWE(r · p) B = 0 ,

RLWE(r · q) B = 1 ,
(5)

where r ∈ RN,Q is a polynomial of predictable degree or coefficient norm. The most well
known solution to this problem for r = 1, i.e., the exact setting, is induced by the CMUX
gate introduced in [CGGI20]. Then, we can first scheme switch ct to an RGSW sample
and apply the CMUX gate afterwards.

However, in many instances we do not need an exact evaluation. More specifically, we
will assume that the coefficients of p (resp. q) are distributed in chunks, i.e.,

∃k|N : p =
k−1∑
i=0

p̄i

N
k −1∑
j=0

X
N
k ·i+j . (6)

In this case, we will call the polynomial or corresponding RLWE sample k-redundant.
Note that this implies that there are at most k unique coefficients in the polynomial.
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Let us consider a setting in which deg p, deg q < N
2 and where acc0, acc1 are k-redundant.

Note that this implies that the upper N
2 coefficients are 0 and effectively only k

2 values are
contained in the polynomials. Then, let us assume that the error of the LWE sample is
bounded by q

2k , i.e.,
|φ(ct)−∆q,2B (mod q)| ≤ q

2k
. (7)

Then, a first version of a MUX gate is given by Algorithm 6. At first, acc0 and acc1 are
combined into a single RLWE sample. Then, the ciphertext is modulo switched to N and
therefore a blind-rotation rotates the coefficients of the accumulator by its phase. Post
blind-rotation, we extract fixed coefficients which should be equal to the unique coefficients
of p if B = 0 and the coefficients of q if B = 1, assuming that Eqn. 7 holds. Note that
the coefficients may be negated due to the negacyclicty property of the ring. Hence, for
SIG−MUX, it holds that r = ±1. We note that in general the values of N and k are

Algorithm 6: SIG−MUX
Input: acc0 = RLWE(p), acc1 = RLWE(q)
Input: ctq = LWE(∆q,2B)
Output: RLWE(rv)
ctN ← ModSwitchq→N (ctq);
acc← acc0 + X

N
2 acc1;

acc← XN− N
4k · acc;

accBR ← BlindRotate(ct, acc);
accout ← [0, 0]⊤;
h←

∑ N
2k −1
j=0 Xj ;

for i = 0 to k − 1 do
cti

Q ← SampleExtract(accBR, i · N
2k );

acci ← RLWEKeySwitchS⃗→s(cti
Q);

accout ← accout + X
N
2k i · h · acci;

end
return accout

known ahead of time. Hence, the multiplication by h in Algorithm 6 does not need to be
explicitly computed, provided that we modify the RLWE key-switching key to include h,
i.e. for an RLWE key-switching key from S⃗ to s

KsKi,j,k = RLWEs(h · k · Lj · S⃗i) .

Then, the following lemma holds

Lemma 3. Let B0,B1 be the noise variance of acc0, acc1 and let BBR be the noise variance
induced by the blind-rotation algorithm. Furthermore, let BKS be the noise variance induced
by RLWE key-switching. Then, Algorithm 6 outputs an RLWE sample of noise variance

Bout ≤ B0 + B1 + BBR + k · BKS .

Proof. Let B0,B1 be the noise variance of acc0, acc1 and let BBR be the noise variance
induced by the blind-rotation algorithm. Furthermore, let BKS be the noise variance
induced by RLWE key-switching. We assume that h is known ahead of time. Then, we
have that

φ(accout) =
k−1∑
i=0

(h · φ(accBR)i· N
2k

+ ei
KS) ,



Leonard Schild, Aysajan Abidin and Bart Preneel 13

where the coefficients of ei
KS have a variance of BKS and the error of accBR is the sum of

the noise of acc0, acc1 and the noise induced by blind-rotation, hence

Bout ≤ B0 + B1 + BBR + k · BKS .

The previously described MUX gate is correct and can be useful in settings where sign
flips can be neglected, e.g. when ∀i : pi ∈ {0,

⌊
Q
2

⌉
}. However, the method is far from

optimal. We are forced to pack every coefficient into a single RLWE sample. Furthermore,
since we are only modulo switching to N , we are “wasting” half the order of the ring. Let
S ∈ {−1, 1} and consider the identity in Eqn. 8.

p + q + S · (p− q) =
{

2p S = 1,

2q S = −1.
(8)

There, we see how to select between two polynomials without a need to concatenate the
coefficients. Furthermore, it can be easily applied to our context. This time we shall
assume deg p, deg q < N that they are k redundant and that Eqn. 7 still holds. Then, we
can apply Eqn. 8 homomorphically by modulus switching the ciphertext to 2N and letting
the blind-rotation take the role of S, as the signflip it induces depends on the encoded
bit. The full specification is given in Algorithm 7, and in this setting, we have that r = 2,
which can be counteracted by pre-multiplying p, q by 2−1 (mod Q).

Algorithm 7: TWO−MUX
Input: acc0 = RLWE(p), acc1 = RLWE(q) where p, q are k redundant
Input: ctq = LWE(∆q,2B)
Output: RLWE(r · v)
ct2N ← ModSwitchq→2N (ctq + [⃗0, q

4 ]);
/* Multiplication by −X

N
2 to counteract addition of q

4 */
acc← −X

N
2 ·XN− N

2k · (acc0 − acc1);
accBR ← BlindRotate(ct2N , acc);
acc− ← [0, 0]⊤;
h←

∑ N
k −1

j=0 Xj ;
for i = 0 to k − 1 do

cti
Q ← SampleExtract(accBR, i · N

k );
acci ← RLWEKeySwitchS⃗→s(cti

Q);
acc− ← acc− + X

N
k i · h · acci;

end
accout = acc0 + acc1 + acc−;
return accout

Lemma 4. Let B0,B1 be the noise variance of acc0, acc1 and let BBR be the noise variance
induced by the blind-rotation algorithm. Furthermore, let BKS be the noise variance induced
by RLWE key-switching and let ctq = LWE(∆q,2B). Then assuming Eqn. 7 holds and h is
known ahead of time, Algorithm 7 outputs an RLWE sample of noise variance

Bout ≤ 2 · (B0 + B1) + BBR + k · BKS .

Proof. Let us assume Eqn. 7 holds, that p, q are k-redundant and that h is known ahead
of time. Furthermore, let φ(acc0) = p + e0 and φ(acc1) = q + e1, where e0, e1 are error
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polynomials variance B0,B1 respectively. Then assuming ē = φ(ct2N )−∆2N,2B (mod 2N)
it holds that for any i < N

φ(accout)i = φ(acc0)i + φ(acc1)i + φ(acc−)i

= pi + e0
i + qi + e1

i + (−1)B
(
pi+ē + e0

i+ē − qi+ē − e1
i+ē

)
+ ei

= p̄ī + e0
i + q̄ī + e1

i + (−1)B
(
p̄ī + e0

i+ē − q̄ī − e1
i+ē

)
+ ei

=
{

2p̄ī + (e0
i + e0

i+e + e1
i − e1

i+e) + ei if B = 0
2q̄ī + (e0

i − e0
i+e + e1

i + e1
i+e) + ei if B = 1

where ī =
⌊

ki
N

⌉
and e is an error polynomial induced from blind-rotation and RLWE

key-switching. Then,
Bout ≤ 2(B0 + B1) + BBR + k · BKS

and the result follows.

Observe that the conditions to use SIG−MUX and TWO−MUX are identical, but
recall that for SIG−MUX we needed to assume that the degree of the polynomials need
to be less than N

2 . Hence, by using SIG−MUX we can choose only between two sets of
2k
2 = k values, whereas for TWO−MUX we may select between sets of 2k values though

at the cost of having a higher output noise. Finally, we also note that the output error
behaves differently, which we should consider when choosing between the two. In the next
section, we shall see how to utilize MUX gates for our LUT evaluation.

3.3 LUT Evaluation
We are now ready to present our LUT evaluation technique. We give the full specification
in Algorithm 8. The algorithm leverages the second muxing algorithm; it is possible to
exchange the call to TWO−MUX by a call to SIG−MUX , provided we only pack half
the coefficients into the initial accl.

At a high level, the algorithm proceeds as follows: Initially, a subset of bits of size κ
is selected and composed into an integer. Then, as illustrated in Sect. 3.1, we evaluate a
binary function that will generate all possible outputs conforming to the subset of bits.
In the final stage, we use our RLWE MUX gates to iteratively select the correct output
bits. Note that in the application of EvalBinFunc we use a scaling parameter different
than 2, introducing a random sign flip. However, recall that while applying TWO−MUX,
the output variable corresponds to the double of one of the input variables. Hence, at
the end of the final iteration of the selection step, we shall obtain a scaling parameter of
±2u−κ−1 ·

⌊
Q

2u−κ

⌉
≈

⌊
Q
2

⌉
(mod Q), no matter what the original sign flip was.

Lemma 5. Let (cti
q)i∈⟨u⟩ = LWE

(
q
2 Bi

)
and let f : Z2u 7→ Z2u where log2(u) ∈ N be a

map. Furthermore, let BBR,BKS be bounds on the variance of blind-rotation and LWE-
RLWE key-switching respectively. Then, Algorithm 8 outputs LWE samples (cti

out)i∈⟨u⟩ =
LWE( Q

2 [f(
∑u−1

j=0 Bj · 2j)]i) with variance Bout such that

Bout ≤ 22u−κ · BBR + 2u · BKS .

Proof. We start by noting that correctness follows from Lemma 1 and Lemma 4. Then,
to show the bound on the output variance, it suffices to track the noise of acc0 in every
iteration of the final loop. Furthermore, it is possible to establish a recurrence relation using
Lemma 4 for the output variance. However, the bound obtained in this way overestimates
the actual variance, since we multiply by h during every RLWE key-switch. Therefore, the
error induced by blind-rotation will be equal in chunks of the output error, and, similarly to
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Algorithm 8: EvalLUT
Input: (cti

q)i∈⟨u⟩ = LWE
(

q
2 Bi

)
Input: A map f : Z2u 7→ Z2u where log2(u) ∈ N
Input: A parameter κ
Output: LWE Samples (cti

out)i∈⟨u⟩ = LWE( Q
2 βi) with βi = [f(

∑u−1
j=0 Bj · 2j)]i

for i = 0 to 2κ − 1 do
Define f i : Z2u−κ 7→ Z2u such that f i(x) = f(x · 2u−κ + i);

end
Define F (x) =

(
[f0(x)]0, ..., [f0(x)]u−1, [f1(x)]0, ..., [f2κ−1(x)]u−1

)
;

/* Composition */
ctκ

N,Q ← AssembleInteger((cti
q)i∈⟨κ⟩, 2κ);

ctκ
N,q ← ModSwitchQ→q(ctκ

N,Q);
ctκ

n,q ← KeySwitchS⃗→s⃗(ctκ
N,q);

/* Output Generation */
(ct0, ..., ctu·2u−κ−1)← EvalBinFunc(ctκ

n,q, F, C = 2u−κ−1);
v ←

⌈
u·2u−κ

2κ

⌉
;

for l = 0 to v − 1 do
accl ← [0, 0]⊤;
for j = 0 to 2κ − 1 do

acctmp ← RLWEKeySwitchS⃗→s(ctl·2κ+j);
accl ← accl + X

N
2κ j · h · acctmp;

end
end
/* Selection */
for i = κ to u− 1 do

w ←
⌈

v
2
⌉
;

for l = 0 to w − 1 do
accl ← TWO−MUX(cti

q, accl, accl+w);
end
v ← v

2
end
for i = 0 to u− 1 do

cti
out ← SampleExtract(acc0, i · N

2κ );
end
return (cti

out)i∈⟨u⟩;

the message components, these terms would partially cancel out in the proof of Lemma 4.
Hence, we establish the result by tracking the variance contribution of RLWE key-switching
and the one induced by blind-rotation regarding the iteration i, as no other operations
take place in the final selection part. We obtain relations

B(i+1)
KS ≤ 2 · B(i)

KS + 2κBKS ; B(0)
KS = 0 ;

B(i+1)
BR ≤ 2 · B(i)

BR + BBR ; B(0)
BR = 2u−κ−1BBR .

The value of B(0)
BR follows from Lemma 1, whereas the initial B(0)

KS is set to 0 as the RLWE
key-switch step may be skipped in the last iteration, as we output LWE samples and
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therefore the last switch is not necessary. Then, we have that

Bout ≤ B(u−κ)
BR + B(u−κ)

KS

≤ 2κ · (22u−2κ − 1) · BBR + 2κ · (2u−κ − 1)BKS

≤ 22u−κ · BBR + 2u · BKS .

We note that in order to guarantee correctness, the blind-rotation keys and the κ
parameter need to be chosen such that the bounds in Sect. 3.2 hold, i.e. acc0, acc1 need
to be 2κ-redundant and for Eqn. 8 to hold w.r.t. cti. Although restrictive, this leads us
to the strength of our approach: reconfigurability. As hinted towards in Sect. 3.1 the
requirements for each part of the algorithm are quite different w.r.t. to input and output
space. Hence, blind-rotation and other parameters can be chosen specifically for each part
which can lead to large performance gains. Furthermore, in the final iterations of the
selection stage, the redundancy requirement may become weaker, so different parameters
may even be chosen for each iteration. This can occur in cases where, e.g., u << 2κ.
Although the concrete number will vary on the setting, we can see that if our parameter
set(s) support a plaintext space of size 2κ and u + log2(u) ≤ 2κ + 1 the evaluation will
need u blind-rotations in the best case and 2u− κ blind-rotations in the worst case where
the selection bits need to be bootstrapped before applying TWO−MUX.

To conclude this section, we give two optimizations of the LUT evaluation algorithm:

• As described in Algorithm 8, we keyswitch all generated LWE samples and use
the packed RLWE ciphertexts in TWO−MUX. Looking again at Algorithm 7 we
observe that we compute the difference of two accumulators. However, in practice,
this means that it is more beneficial to compute the difference of LWE samples before
packing them into a RLWE sample in order to decrease the number of necessary
LWE-RLWE key-switches.

• In each iteration of the selection step we extract a number of LWE samples. This
extraction is necessary to “reset” the offset induced by the LWE noise for the
TWO−MUX application and facilitate the construction of acc0, acc1. However, if
the noise level of input bits is low enough, we can skip this extraction and subsequent
RLWEKeySwitch. After a MUX step, the coefficients in each half of the polynomial
in the RLWE output induce the two accumulators. Hence, we may set acc0 = accout
and acc1 = −X

N
2 accout and, provided the noise in input bits is sufficiently low, the

next MUX application will yield the correct result.

4 AES Transciphering
In this section, we shall discuss how we implement the AES-128 round function homo-
morphically. In the clear, the AES state is represented by a 4 by 4 matrix with entries in
GF (28), which can also be viewed as bytes. In our setting, we will encode the state S as a
rank 3 tensor of dimension 4× 4× 8 containing LWE samples encrypting the individual
bits of the state byte, which are encoded as

Si,j,k = LWE
(
∆q,2 · [bi,j ]k

)
,

where bi,j is the state byte at entry i, j. This encoding makes XOR operations effectively
free as they can be computed through the linear homomorphism of LWE samples.

The AES round function consists of four operations. Note that we will not differentiate
between the encryption or decryption circuit as the counterparts of the individual steps
operate in an identical manner. The four steps are given by
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1. AddRoundKey, in which the key schedule is XOR-ed with the state matrix.

2. SubBytes, which evaluates a bijection on the entries of the state matrix.

3. ShiftRows, which is a permutation of the entries of the state matrix.

4. MixColumns, which is given by a linear function over GF (28) on the columns of the
state matrix.

In Table 1, we give an overview of how the individual steps are implemented in a homo-
morphic setting.

Table 1: Homomorphic equivalent of the AES round function steps.

Step FHE Implementation
AddRoundKey LWE Sample addition

SubBytes Algorithm 8
ShiftRows Permutation of the state tensor

MixColumns LWE Sample addition and Algorithm 9

Regarding the AddRoundKey step, we note that the key schedule can be obtained in
two different ways. The first option is that the party holding the AES secret key can
provide a set of LWE samples encrypting each bit of the key, and then we can derive the
entire schedule by leveraging Algorithm 8. This solution may be rather time intensive. The
second solution requires the party holding the symmetric key to derive the key schedule
themselves. Then, the bits of the key schedule may be stored in a small set of RLWE
samples from which we can extract LWE samples encoding the bits using SampleExtract i.e.,
Algorithm 1. The memory overhead is rather trivial compared to the otherwise required
keys, such as the bootstrapping or key-switching keys. For AES-128 with 10 rounds,
this requires storing

⌈ 128·10
N

⌉
RLWE samples and, e.g., when N = 210, log2(Q) = 32 one

needs 2 RLWE samples, each containing 2N log2(Q)-bit integers, yielding an overhead
of 16KiB1. We finally note that related works [TCBS23, WWL+23] similarly assume that
the key-schedule is computed in advance.

We use the LUT evaluation algorithm described in the previous section to compute the
SubBytes step. In the case of the MixColumns step, we need to evaluate a matrix-vector
multiplication over GF (28) using bits. Under normal circumstances, the multiplication may
require additional bootstrapping operations, but in our setting, one of the operands is given
in plaintext. Hence, we can implement this step only using LWE Sample additions (XOR
operations) and do not need any AND gates. The whole procedure for the homomorphic
Galois multiplication is given in Algorithm 9 and outputs the bits of the result.

We note that the algorithm is not optimal regarding the number of additions. In fact,
in many cases, ciphertexts will be added to themselves. If we were operating on bits, this
would be no issue, as the result would be zero. However, in our case XOR is implemented
via the addition of LWE samples, and adding a ciphertext to itself will yield an encoding
of zero but with larger noise. Therefore, any implementation using Algorithm 9 should
consider whether a lower noise level is critical to the correctness of the procedure and if so
use a circuit with minimal number of XOR operations.

We can observe that the evaluation of the MixColumns circuit requires up to 9 additions
for the encryption circuit and 18 additions for the decryption circuit. This difference stems
from the scalars used in MixColumns depending on the direction. Hence, performing those
additions before the final key- and modulus switching step is generally very beneficial.
Then, as we operate under a larger modulus, the final modulus switch will nonlinearly
decrease the noise, and we will have a higher success rate in decrypting the bits. Finally,

1For reference, the LWE to RLWE key-switching key may require around 1GB.
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Algorithm 9: GaloisMul
Input: (cti)i∈⟨8⟩ = LWE (∆q,2Bi)
Input: w ∈ GF (2)[X]/(X8 + X4 + X3 + X + 1) = GF (28)
Output: (cti

out)i∈⟨8⟩ = LWE (∆q,2B′
i)

(cti
out)← [⃗0, 0]⊤;

for i = 0 to 7 do
if wi = 1 then

cti
tmp, ..., ct7

tmp ← ct0, ..., ct7−i;
ct0

tmp, ..., cti−1
tmp ← [⃗0, 0]⊤;

for j = 7 to 7− i + 1 do
ctj+i (mod 8)

tmp ← ctj+i (mod 8)
tmp + ctj ;

ctj+i+1 (mod 8)
tmp ← ctj+i+1 (mod 8)

tmp + ctj ;
ctj+i+3 (mod 8)

tmp ← ctj+i+3 (mod 8)
tmp + ctj ;

ctj+i+4 (mod 8)
tmp ← ctj+i+4 (mod 8)

tmp + ctj ;
end
for j = 0 to 7 do

(cti
out)← (cti

out) + (cti
tmp);

end
end

end
return ctout

it is worth pointing out that each output bit necessitates a different amount of additions,
and we can use this fact for the LUT evaluation algorithm (Algorithm 8) by selecting the
most noisy bits for the composition step and bits exhibiting a lower noise level for the
selection stage.

5 Evaluation
In this section we provide theoretical and practical evaluation of our LUT algorithm applied
and compare its performance in the context of transciphering to other recent works.

5.1 Theoretical Evaluation
We first give a theoretical comparison to [GBA21].

In Table 2, we compare the number of blind-rotations and LWE-to-RLWE keyswitches
to the tree based method from [GBA21]. Specifically, we target a setting in which we
work on binary digits and in which the LUT have as many inputs as output digits, as our
algorithm was designed for this case. At a high level, the tree-based algorithm and ours
operate similarly. However, there are three key differences.

First, we do not start from a complete set of RLWE samples from which we select the
correct output. Instead, our method starts by consuming κ ciphertexts containing bits
in order to generate our initial set. Then, using parameter sets that support plaintext
spaces larger than B, we can encode significantly more values in our accumulators. This
increase leads to a reduction in the number of necessary blind-rotations. Similar results
could be obtained by combining [GBA21] with ideas from [CLOT21]. Finally, the tree
based method from [GBA21], by default, requires knowledge of the most significant bit of
the message in order to circumvent the issue of negacyclity, an issue we do not face.
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Table 2: Number of blind-rotations and LWE to RLWE key switches of related works. We
annotate the settings in which circuit bootstrapping [CGGI20] is used with "CBS."

Work #Blind-Rotations #LWE-RLWE Switches
[GBA21] d · (1 +

∑d−2
i=0 2d)

d · (2d − 1)[GBA21] (With CBS) O(d)
Ours (SIG−MUX) d− κ +

∑d−κ−1
i=0

⌈
d·2d−κ−1−i

2κ

⌉
d · (2d−κ+1 − 1)

Ours (SIG−MUX, CBS) O(d)
Ours (TWO−MUX) d− κ +

∑d−κ−1
i=0

⌈
d·2d−κ−1−i

2κ+1

⌉
d · (2d−κ − 1)

Ours (TWO−MUX, CBS) O(d)

Table 3: Output variance of related works compared to ours. u denotes the number of
digits, BKS ,BLW E−RLW E ,BBR respectively denote bounds on the variance induced by
LWE-LWE key-switching, LWE-RLWE key-switching and blind-rotation respectively.

Work Output variance (Reported) Output variance (Actual)
[GBA21] (u− 1)BKS + uBBR u log(Q)BKS + uBBR + 2u · BLW E−RLW E

Ours 22u−κ · BBR + 2u · BLW E−RLW E

Next, we give an overview of the output variance of the tree based method in Table 3.
We note that the formula given in Table 6. of [GBA21] w.r.t the output variance of the
tree-based method is not correct. More specifically, the authors of [GBA21] only consider
the noise induced by key-switching and blind-rotation. Therefore, they do not consider the
noise induced by additional LWE-RLWE key-switching caused by the circuit bootstrapping
operation and the noise resulting from the public key switch operation in Algorithm 6 in
[GBA21].

To end this subsection, we again note that the novel algorithm from [BPR23] may be
used to evaluate binary LUTs more efficiently. However, a proper comparison is limited
because the authors do not provide bounds on the worst-case umber of blind-rotations
and other operations or on the output variance.

5.2 Experiments
In this section, we evaluate our technique and implement the AES encryption circuit
utilizing Algorithm 8 and the natural homomorphism of LWE samples.

We run our experiments on an Intel i7 13800H 5.2 GHz processor with 32 GB of RAM
and implement our LUT evaluation technique using the OPENFHE library2 modified that
it exposes the ring secret key. We compile the library using Clang-15 and always use the
WITH_NATIVEOPT=ON flag and the BUILD_STATIC=ON in order to leverage link time optimiza-
tion. Depending on the size of the ring moduli, we also supply the WITH_NATIVESIZE=64
or the WITH_NATIVESIZE=32 flags to decrease the memory usage. OPENFHE does not
provide an LWE to RLWE keyswitch operation, hence we implement our own optimized
implementation that takes the primary bottlenecks into account, namely cache misses and
unnecessary data loads and write-backs.

We give our parameter sets used in Table 4. For each parameter set, we give the the
security3 and failure probability in Table 5. Furthermore, we note that we give the failure
probability with regards the blind-rotation algorithm from [LMK+23], always using 10
automorphism keys, and that we leverage sparse LWE keys to control the noise of modulus
switching, as has been done in other works [KS22]. However, in the implementation, we

2https://github.com/openfheorg/openfhe-development
3Established using the lattice estimator https://github.com/malb/lattice-estimator
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Table 4: Parameter sets employed. σ is the standard deviation employed for R(LWE)
samples, ||s⃗||0 is the Hamming weight of s⃗ and nBR is the number of bootstraps per AES
round function evaluation. Lboot is the decomposition basis for the algorithm in [LMK+23];
note that we give three values for Lboot, one for each stage of Algorithm 8.

Set log(Q) q n N σ Lksk Lksk,rlwe Lboot ||s⃗||0 nBR
I 28 210 512 210 3.19 25 26 27, 23, 24 100 128
II 28 210 600 210 3.19 25 26 27, 24, 210 100 176
III 36 210 448 210 3.19 25 26 212, 29, 212 100 128
IV 42 211 600 211 3.19 27 27 214 100 128

Table 5: Target failure probabilities. We also give the number of evaluations before the
failure probability exceeds 50% and the corresponding amount of data transciphered.

I II III IV
Security 128 128 80 128

Failure probability P[FAIL-ROUND] 2−8 2−15 2−22 2−63

Failure probability P[FAIL-BLOCK] 2−5 2−12 2−19 2−61

neval until P[FAIL-ROUND] > 0.5 177 2.2 · 105 2.9 · 106 8 · 1017

Equiv. amount of data in Bytes 2.76 · 103 3.54 · 105 4.5 · 106 1.28 · 1019

use the blind-rotation technique by Chilotti et al. [CGGI20] modified for ternary secrets in
[MP21], which will have similar timings but significantly larger noise growth. This is due
to the fact that OPENFHE does not support encrypted accumulators for the blind-rotation
technique from [LMK+23] and does not properly implement the round-to-odd technique
by Liu et al. [LMK+23] or Algorithm 6 from [LMK+23]4. As the implementation is not
exactly the same, there is a larger error which can be neglected in some cases. However,
we chose our parameters with regard to the variance of the blind-rotation of [LMK+23]
and therefore the error may cause the LUT evaluation to fail. We briefly discuss how our
parameter sets were obtained. We always fix the standard deviation σ = 3.19. Initially
we determine tuples (Qi, Ni) with Ni ∈ {210, 211} for the RLWE instantiation based on
security considerations. Then, we proceed by determining a set of acceptable bases L for
the blind-rotation keys for each stage, requiring logL(Q) ≤ 10 when log2(Q) < 32 and
logL(Q) ≤ 4 when log2(Q) < 64 to obtain a set of parameters that are efficient. Then, we
test every possible combination of L bases and compute the output variance using Lemma 5.
Finally, we select the combination of bases that induces a desired failure probability while
also minimizing the number of digits during blind-rotation, that is logL(Q).

The security and failure probability were chosen so that Set I & III were comparable
to the parameters used in the related works. Parameter Set II was chosen to provide a
compromise: recall from Section 3 that we can choose to bootstrap the bits used in the
final selection stage of our LUT algorithm, decreasing the noise of the encoded. Therefore,
the probability of success of the MUX algorithms increases, but at the cost of requiring
more time. Finally, parameter Set IV was selected to explore the performance of our LUT
evaluation in light of recent attacks on FHEW based schemes that exploit a higher failure
probability [CSBB24, CCP+24].

The security and failure probability of related works are given in Table 6. We note that
these may differ from the values report in the individual works which can be attributed to
updates to the Lattice estimator. For [WWL+23] no failure probability was reported and
we give our own estimate based on the formula of the output variance given in [WWL+23].
For [TCBS23], we briefly note that there is a significant difference between the security
level reported by the authors and the value we obtained using the lattice estimator. In

4See https://github.com/openfheorg/openfhe-development/pull/338
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Table 6: Security and failure probability of related works. In brackets: values reported in
the corresponding work.

[TCBS23] [WWL+23] [BPR23]
Security in bits 27 (128) 110 (128) 104 (128)

P[FAIL] 2−23 2−7 2−40

Table 7: LUT evaluation time in seconds for 8 bits and κ = 5.

Set I II III IV
LUT evaluation time 0.383 0.470 0.414 0.753

AES transciphering time 62 76 67 121

[TCBS23], the authors use the original TFHE library5 which discretizes the unit torus
R/Z onto a 32 bit integer and uses binary (R)LWE keys. Hence, the modulus is in practice
equal to 232 and the authors use a Gaussian width parameter of α = 9.6 · 10−11 yielding in
practice a standard deviation σ = α · q√

2π
≈ 0.16 (cf. [ACF+15]). Together with an LWE

dimension of 211, these parameters are susceptible to an attack using Gröbner bases from
[ACF+15]. In our experiments, we use κ = 5 as, on the one hand, it allows us to evaluate
an 8-bit LUT in 8 blind-rotations, and on the other hand, it is not too difficult to find
appropriate parameter sets. Furthermore, in all cases we will rely on the TWO−MUX
algorithm. If we relied on SIG−MUX instead, the first iteration of the selection stage
would need double the number of blind-rotations as we can pack a smaller amount of
values into the accumulator. Such arguments will generally decide which technique to
use: If finding appropriate parameters at a certain failure rate is difficult, it may be
worth sacrificing efficiency for a lower growth of the error variance using SIG−MUX. On
the other hand, if we can be flexible with parameters but wish to focus on an efficient
implementation, then we recommend leveraging TWO−MUX as the higher noise growth
can be mitigated by using larger moduli.

In Table 7 we give the time necessary per LUT evaluation for an 8 to 8 bit look-up
table and the time necessary for an evaluation of the AES-128 decryption circuit for all
our parameters. We observe that Set II is faster than Set I despite a larger number of
bootstraps due to larger decomposition bases. Set IV yields the slowest run-time as it
necessitated a dimension N = 211.

In Table 8, we compare our timings. We note that the related works leverage the Torus
variant of the CGGI/GINX bootstrapping. This implies that the implementations leverage
a power-of-two ciphertext and ring modulus and consequently, no modular reductions need
to be performed as x86 processors are able to naturally operate modulo 232 or 264, saving
a considerable amount of time. We note that our algorithms may also be instantiated
in this way and would yield another speedup. In the case of [WWL+23], usage of the
TFHE-PP library6 implies that many parameters are provided at compile time, which
yields some additional performance gains. We give both the reported timings and timings
that were adjusted based on the ratio between the clock speed of the processor employed
in the related works and our processor. No further comparisons were possible as none of
the related works chose to publish their implementation.

Considering the previous points, we finally note that despite the aforementioned
advantages of related works, our methodology still yields the fastest execution time for the
decryption circuit, outperforming [TCBS23] by a factor of 4 in the best case. Likewise, we
show faster execution time than [WWL+23] by about 19% with a similar failure rate (Set
I) and 12% in the best case (Set III).

5tfhe.github.io
6https://github.com/virtualsecureplatform/TFHEpp.git
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Table 8: Comparison of recent transciphering works. In case of related works we give
the reported timings, followed by the timings that would result from an execution on our
testbed.

Work Core Technique Torus Instantiation Sequential Timing (s.)

[TCBS23] LUT Evaluation from
[GBA21] Yes 270 (244)

[WWL+23]

Circuit Bootstrapping
using [CLOT21, CIM19]
and Packing from
[CGGI20]

Yes 87 (76)

[BPR23]
Novel framework to
evaluate boolean
functions

Yes 109 (89)

Ours Algorithm 8 No

62 (Set I)
76 (Set II)
67 (Set III)
121 (Set IV)

Finally, we observe that the fourth parameter set yields a slower execution than
[WWL+23, BPR23], which is to be expected as this parameter set has the lowest failure
rate out of all related work by a significant margin, requiring larger moduli and ring
dimensions.

5.3 Comparison to FHE-Friendly Ciphers
To close the evaluation section, we compare our results on the transciphering of AES-
128 to recent works implementing transcipherings of schemes that are considered to
be FHE friendly, namely, Trivium [DC06], Kreyvium [CCF+18], Filip [MCJS19] and
Elisabeth [CHMS22]. The aforementioned schemes are stream ciphers. We note that FHE-
friendly block ciphers exist, such as Chaghri [AMT22], but to the best of our knowledge,
there are no works evaluating the transciphering of such schemes using accumulator-based
bootstrapping algorithms.

An overview of the related works is given in Table 9 and we note that they were
chosen due to fact that, similarly to our methodology, they rely on accumulator-based
FHE schemes. We note that no sequential timings were given in the case of [BOS23].
Furthermore, [BOS23] relies on an implementation of TFHE whereas [MPP24] leverages
the novel FINAL blind-rotation [BIP+22].

We give the throughput per bit of our AES-128 transciphering in Table 10. Although
we did not parallelise our implementation, we note that the 16 S-BOX evaluations in each
round are completely independent and could therefore be perfectly parallelised. Hence, we
also give the (hypothetical) throughput for this case. By contrasting Table 9 and Table 10
we observe that, despite the speedups gained through our methodology in the context
of AES transciphering, the throughput is still lacking compared to the transciphering
of FHE-friendly ciphers. By default, the transciphering of AES remains 2-3 orders of
magnitudes slower, and even in a setting where we would achieve an ideal speedup through
parallelisation, our performance remains an order of magnitude slower on average.

The drastic differences in throughput indeed justify a faster adoption of FHE-friendly
ciphers. However, we also note that one may not be able to leverage them in every scenario.
Such an example is given in a setting where the AES encrypted data is already stored
remotely. Then, the party holding the symmetric key would first need to transform the
AES encryption into the encryption w.r.t. a FHE-friendly cipher. However, it will be more
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Table 9: Throughput of FHE friendly ciphers in milliseconds per bit. We also state
the timings adjusted to the processor clock frequency of our testbed. We note that the
measurements for Elisabeth in [MPP24] stem from [CHMS22].

Work [BOS23] [MPP24]
Parallelization Yes No

Failure probability 2−40 2−30

Scheme Trivium Kreyvium Filip Elisabeth
Throughput 1.8 2.3 6.3 22.7

Throughput (adjusted) 1.2 1.5 3.6 3.6

Table 10: Throughput of the AES-128 transciphering in our work in milliseconds per bit.
We also state the timing we would obtain by performing the 16 S-BOX evaluations in
parallel every round.

Parameter Set I II III IV
Throughput 484 593 523 1002

Throughput (parallel) 30 37 32 62

convenient to perform the transciphering directly in this case.

6 Conclusion and Future Work
In this work we described how to evaluate look-up tables based on binary digits efficiently
by almost exclusively relying on the well-known building blocks of TFHE-like schemes.
Despite its simplicity, our method exhibits efficiency rivalling and exceeding concurrent
works, and at the same time, our method is highly adaptive. However, certain topics still
need to be investigated further, which we leave to future work. More concretely, we may
significantly boost performance by leveraging the blind-rotation techniques based on the
NTRU assumption as introduced in FINAL by Bonte et al. [BIP+22] or NTRU-ν-ium by
Kluczniak [Klu22]. Furthermore, unlike other methods, blind-rotation efficiency was not
the only bottleneck of our method, but LWE to RLWE key-switching as well, which could
be significantly sped up by exploiting special hardware such as GPUs or FPGAs.
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